Oblique warped products

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oblique Corrections from Higgsless Models in Warped Space

We calculate the tree-level oblique corrections to electroweak precision observables generated in higgless models of electroweak symmetry breaking with a 5D SU(2)L×SU(2)R ×U(1)B−L gauge group on a warped background. In the absence of brane induced kinetic terms (and equal left and right gauge couplings) we find the S parameter to be ∼ 1.15, while T ∼ U ∼ 0, as in technicolor theories. Planck br...

متن کامل

Warped Products Admitting a Curvature Bound

Warped products provide perhaps the major source of examples and counterexamples in metric and Riemannian geometry. Sufficient conditions for a warped product B×f F to have a curvature bound in the sense of Alexandrov, either above or below, are found in [AB 04]. Given the importance of warped products, we want to know if all the known sufficient conditions are needed. Here we prove their neces...

متن کامل

Bernstein-type Theorems in Semi-riemannian Warped Products

This paper deals with complete hypersurfaces immersed in the (n + 1)-dimensional hyperbolic and steady state spaces. By applying a technique of S. T. Yau and imposing suitable conditions on both the r-th mean curvatures and on the norm of the gradient of the height function, we obtain Bernstein-type results in each of these ambient spaces.

متن کامل

Warped Products and Conformal Boundaries of Cat(0)-spaces

We discuss the conformal boundary of a warped product of two length spaces and provide a method to calculate this in terms of the individual conformal boundaries. This technique is then applied to produce CAT(0)-spaces with complicated conformal boundaries. Finally we prove that the conformal boundary of an Hadamard n-manifold is always simply connected for n ≥ 3, thus providing a bound for the...

متن کامل

A Ddvv Inequality for Submanifolds of Warped Products

We prove a DDVV inequality for submanifolds of warped products of the form I ×a Mn(c) where I is an interval and Mn(c) a real space form of curvature c . As an application, we give a rigidity result for submanifolds of R×eλt Hn(c). RÉSUMÉ. Une inégalité de type DDVV pour les sous-variétés des produits tordus. Nous donnons une inégalité de type DDVV pour les sous-variétés des produits tordus de ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2007

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2006.09.002